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Introduction
The integration of automation and AI into clinical pathology is revolutionizing diagnostic accuracy across various medical disciplines (Table 1) 

[1-3]. Recent literature underscores the transformative potential of these technologies in enhancing diagnostic workflows, improving precision, and 
facilitating early detection of diseases [4-6]. Digital pathology has emerged as a pivotal advancement, enabling large-scale data storage, retrieval, and 
analysis that support the development of robust diagnostic algorithms [7]. The transition from traditional glass slides to digital images has opened 
avenues for applying AI-driven image analysis techniques, which assist pathologists in tissue examination, segmentation, and quantification of 
histological structures [8]. Such developments are particularly evident in kidney pathology, where AI algorithms have been employed to identify 
histological features and predict clinical outcomes, demonstrating significant progress in disease classification and prognosis [8].

In neuro- and gastrointestinal pathology, AI’s role extends to neuroimaging and endoscopic image analysis [9-11]. For instance, AI applications 
in gastrointestinal endoscopy focus on analyzing endoscopic images to improve lesion detection and characterization, with expert reviews 
highlighting the importance of AI in enhancing diagnostic accuracy in gastrointestinal diseases [12]. Similarly, AI-based processing algorithms 
for computed tomography images have been proposed to interpret pathological changes, such as in COVID-19 diagnosis, by highlighting objects 
of interest and contrasting features based on color coding and image dynamics [13]. The broader impact of AI in diagnostics is also evident in 
laboratory settings, where AI systems are integrated into preanalytical, analytical, and postanalytical phases to optimize workflow and accuracy 
[2]. Automated systems, such as high-throughput analyzers and microfluidic devices, have improved the reproducibility and efficiency of platelet 
function testing, exemplifying how automation enhances diagnostic consistency and throughput [14].
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Despite these advancements, challenges remain in the widespread adoption of AI and automation. For example, the reliability of AI tools 
like ChatGPT in complex clinical scenarios has been questioned, with studies indicating limitations in handling intricate pathologies and in 
identifying incorrect presentations [15]. Additionally, the implementation of digital and AI technologies requires overcoming clinical, technical, 
and ethical hurdles to fully realize their potential in routine practice [7]. In summary, current literature demonstrates that automation and AI are 
significantly transforming clinical pathology by improving diagnostic precision, enabling large-scale data analysis, and streamlining workflows. 
These innovations are paving the way for more accurate, efficient, and personalized diagnostic approaches, although ongoing efforts are needed to 
address existing limitations and facilitate broader clinical integration [16-18].

The integration of automation and AI in clinical pathology is revolutionizing the landscape of diagnostic accuracy. As the field evolves, AI 
technologies are increasingly being employed to enhance the precision, efficiency, and reproducibility of diagnostic processes [19-21]. This article 
explores the transformative impact of AI in clinical pathology, highlighting its applications, benefits, and the challenges that lie ahead.

Advancements in AI Applications
AI has shown remarkable potential in various subspecialties of pathology, particularly in digital pathology, where it aids in the analysis of 

digitized images [22-24]. Recent studies have demonstrated that AI can significantly improve diagnostic performance across multiple applications. 
For instance, a systematic review by Kunze et al. [25] revealed that AI models for detecting anterior cruciate ligament and meniscus tears achieved 
an area under the curve (AUC) ranging from 0.895 to 0.980, indicating high diagnostic accuracy. Similarly, Steiner et al. [26] emphasized the 
promise of AI in digital pathology, noting its ability to enhance diagnostic accuracy and efficiency while addressing the existing translation gap 
into clinical practice. In gastrointestinal endoscopy, AI applications have transformed image analysis, enabling the detection and classification of 
various conditions, including colorectal polyps and early gastric cancer [12]. The implementation of deep learning techniques has shown potential 
to improve diagnostic accuracy and reduce the workload of healthcare professionals [27]. Furthermore, the integration of AI in nephropathology 
has led to advancements in histological analysis, improving precision and prognostic capabilities [8].

AI in pathology diagnostics

•	 AI technologies, including deep learning and machine learning, are being utilized to automate the analysis of pathological images, 
reducing the need for manual evaluation and increasing diagnostic accuracy [1, 28].

•	 AI-driven tools are particularly effective in detecting subtle patterns in complex cases, such as cancer, which might be missed through 
manual examination [7].

•	 The integration of AI with digital pathology allows for the precise characterization of tumors, aiding in targeted therapy decisions and 
personalized medicine [7].

Automation and robotics in laboratories

•	 Automation and robotics have streamlined laboratory processes, reduced errors and increasing efficiency in sample processing and data 
analysis [29].

•	 These technologies facilitate high-throughput environments and remote diagnostics, enhancing the accessibility and precision of 
laboratory practices [29].

•	 Automated whole slide imaging scanners provide high-resolution images that are crucial for integrating imaging into all aspects of 
pathology reporting [1].

Digital pathology and AI synergy

•	 Digital pathology, combined with AI, enables the automation of repetitive processes such as tissue segmentation and biomarker 
quantification, decreasing inter-observer variability [7].

•	 The digitalization of pathology laboratories enhances workflow efficiency and allows for large-scale data storage and retrieval, paving the 
way for robust diagnostic algorithms [7].

Subspecialty AI application Key benefits Notable studies/Tools
Nephropathology Histological image analysis, outcome prediction Improved disease classification and prognosis AI algorithms for glomerular pathology

Gastrointestinal pathology Endoscopic image analysis Enhanced lesion detection and classification AI in colorectal polyp detection

Neuropathology Neuroimaging analysis Accurate identification of pathological 
changes AI in neuroimaging for early diagnosis

Hematopathology Automated slide scanning and classification Faster lymphoma subtyping and risk 
stratification Convolutional neural networks for lymphoma

Oncology (general) Tumor subtyping, biomarker quantification Improved precision in targeted therapy 
decisions WIFPS

Laboratory diagnostics Preanalytical and postanalytical workflow Increased efficiency, reduced human error High-throughput analyzers, microfluidics
Breast pathology Histopathology image classification Higher sensitivity for carcinoma detection Ensemble VGG16/VGG19 models

Prostate pathology WSIs and normalization for cancer detection Consistent results across scanning systems Cycle-GAN normalization with U-Net

Table 1: Applications of AI and automation in subspecialties of clinical pathology.
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•	 AI applications in nephropathology, for instance, have shown potential in improving diagnostic accuracy and efficiency by identifying 
histological structures and predicting clinical outcomes [30].

Enhancing Diagnostic Accuracy
The integration of AI into clinical pathology has significantly enhanced diagnostic accuracy by leveraging advanced algorithms to analyze 

complex datasets [31-33]. AI’s ability to identify subtle patterns in pathological images, such as those found in cancer tissues, has reduced the 
likelihood of human error and improved the precision of diagnoses [34-36]. For example, deep learning models have been successfully applied to 
breast cancer pathology, enabling more accurate tumor classification and grading while providing valuable prognostic insights. These advancements 
allow pathologists to focus on interpreting results and making critical clinical decisions, thereby optimizing workflow efficiency [37].

AI-driven tools have also demonstrated remarkable success in reducing inter-observer variability, a longstanding challenge in traditional 
pathology practices [38, 39]. By standardizing the analysis of histological samples, AI ensures consistent and reliable diagnoses, particularly in 
high-stakes scenarios like cancer detection [40-42]. Studies have shown that AI algorithms can achieve diagnostic performance comparable to, or 
even surpassing, that of experienced pathologists in specific tasks. This consistency is crucial for improving patient outcomes and fostering trust 
in AI-assisted diagnostics [43]. Moreover, AI-driven algorithms have been shown to reduce inter-observer variability, a common challenge in 
traditional pathology practices. This reduction in variability is crucial for ensuring consistent and reliable diagnoses, particularly in high-stakes 
environments such as cancer diagnosis [7].

The synergy between AI and digital pathology has further amplified diagnostic capabilities [44-46]. Digital platforms enable the storage and 
retrieval of vast amounts of pathological data, which AI algorithms can analyze rapidly and accurately [47-49]. For instance, in nephropathology, 
AI has been used to identify histological structures and predict clinical outcomes, enhancing both diagnostic accuracy and prognostic capabilities. 
This combination of digital infrastructure and AI analysis paves the way for more efficient and scalable diagnostic processes [50]. Despite these 
advancements, the role of human expertise remains indispensable. AI systems excel at processing large volumes of data and identifying patterns, 
but they lack the contextual understanding and clinical judgment of trained pathologists. Collaborative approaches, where AI assists in preliminary 
analyses and flagging potential issues, allow pathologists to focus on complex cases and integrate AI findings with their own expertise [51-53]. This 
partnership ensures a balanced and comprehensive diagnostic process.

The potential of AI to enhance diagnostic accuracy extends beyond histopathology. In fields like neuroimaging and gastrointestinal endoscopy, 
AI applications have improved lesion detection and characterization, leading to earlier and more accurate diagnoses [54, 55]. For example, AI-
powered endoscopic systems can highlight suspicious areas in real-time, aiding clinicians in identifying precancerous lesions or early-stage 
tumors [56, 57]. These innovations underscore the transformative impact of AI across diverse medical disciplines. Looking ahead, the continued 
refinement of AI algorithms and their integration with emerging technologies, such as genomics and molecular profiling, holds promise for further 
advancements in diagnostic accuracy [58-60]. However, ongoing efforts are needed to address challenges like algorithmic bias, data quality, and 
the need for robust validation frameworks. By fostering collaboration between AI developers, clinicians, and regulatory bodies, the field can ensure 
that these technologies are deployed responsibly and effectively, ultimately benefiting patient care [61, 62].

Case Studies
The integration of digital pathology with AI technologies is revolutionizing traditional diagnostic practices, enabling more precise and reliable 

disease detection and prognosis. This transformation is driven by advancements in digital imaging, machine learning, and computational tools, 
which collectively improve the quality and speed of pathology workflows.

PathChat [63], a multimodal generative AI copilot for human pathology, demonstrated state-of-the-art performance and showed significant 
capabilities across various applications in pathology (Figure 1). The key results highlight its superiority over existing models in diagnostic accuracy 
and its potential as an interactive vision-language AI copilot. PathChat convincingly outperformed open-source baselines like LLaVA 1.5 and 
LLaVA-Med in diagnostic accuracy for multiple-choice questions. In the image-only evaluation setting, PathChat achieved an accuracy of 78.1%, 
which was significantly higher than LLaVA 1.5 (+52.4%) and LLaVA-Med (+63.8%). When clinical context was provided alongside the image, 
PathChat’s accuracy improved to 89.5%, outperforming LLaVA 1.5 (+39.0%) and LLaVA-Med (+60.9%). This indicates that PathChat effectively 
leverages multimodal information for more accurate diagnoses. PathChat also consistently outperformed GPT-4V, a commercial multimodal 
AI assistant, in both image-only and image-with-clinical-context settings. For instance, with clinical context, PathChat achieved 90.5% accuracy 
compared to GPT-4V’s 63.5% (+26.9%). PathChat produced more accurate and pathologist-preferable responses to diverse open-ended queries 
related to pathology compared to other MLLMs. In a human expert evaluation where seven pathologists ranked model responses, PathChat had 
a favorable median win rate of 56.5% against GPT-4V, 67.7% against LLaVA 1.5, and 74.2% against LLaVA-Med. For a subset of open-ended 
questions where pathologists reached a consensus on correctness, PathChat scored an overall accuracy of 78.7%, a 26.4% improvement over GPT-
4V’s 52.3%. It also showed substantial improvements over LLaVA 1.5 (+48.9%) and LLaVA-Med (+48.1%). PathChat’s responses were particularly 
superior to GPT-4V in categories requiring examination of histology images, such as microscopy and diagnosis, with accuracies of 73.3% and 
78.5% respectively, compared to GPT-4V’s 22.8% and 31.6%. While GPT-4V showed higher scores in clinical and ancillary testing categories 
(88.5% and 89.5% respectively), PathChat’s performance in these areas was also respectable at 80.3%. However, the statistical significance of 
GPT-4V’s lead in these categories was not conclusive. PathChat can analyze and describe notable morphological details in histology images and 
answer questions requiring background knowledge in pathology and general biomedicine. It can combine visual features with clinical context 
and medical knowledge, enabling a wide range of applications. PathChat supports interactive multi-turn conversations, allowing it to serve as a 
consultant for human-in-the-loop differential diagnosis, which is particularly valuable for complex workups or in resource-limited settings. In 
summary, PathChat represents a significant advancement in computational pathology, offering a robust and accurate AI copilot that can assist 
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human pathologists in various diagnostic, educational, and research tasks by effectively integrating visual and natural language information.

A study by Song et al. [64] introduces TriPath, a deep-learning platform designed for analyzing 3D pathology samples and predicting clinical 
outcomes (Figure 2). The results highlight the superior performance of 3D volume-based prognostication compared to traditional 2D slice-based 
methods and pathologist baselines. This approach effectively addresses challenges related to sampling bias and tissue heterogeneity inherent in 
2D histopathology. TriPath, utilizing 3D tissue volume, consistently outperforms 2D slice-based methods for patient prognostication. This is 
attributed to its ability to capture comprehensive 3D morphologies, which are often missed by limited 2D cross-sections. The 3D prognostication 
achieved by TriPath surpasses the performance of pathologist baselines, indicating its strong clinical potential. For instance, on the OTLS cohort, 
the whole-volume 3D approach (AUC, 0.860) showed a statistically significant difference compared to 2D planes (AUC, 0.816). Similarly, for the 
microCT cohort, whole-volume 3D (AUC, 0.749) outperformed 2D planes (AUC, 0.634) and clinical baselines. Larger tissue volumes, as analyzed 
by TriPath, effectively mitigate sampling bias, which is a significant limitation of traditional 2D histopathology where limited cross-sections may 
not fully represent the tissue. The study found that using the entire volume (whole-volume 2D) provided better performance than using only a 
portion (single plane), and 3D features further improved this. The platform accounts for tissue heterogeneity by comprehensively capturing 3D 
morphological features, leading to more accurate risk prediction. Ablation analysis showed that incorporating larger portions of the tissue volume 
led to an upward trend in AUC, confirming the benefits of greater tissue volume. TriPath uses an attention-based aggregation module and integrated 
gradient analysis to identify important instances and regions contributing to prognostic decisions, providing interpretability without requiring 
additional pathologist annotations. High IG scores were associated with regions indicating unfavorable prognosis (e.g., infiltrative carcinoma 
resembling Gleason pattern 4), while low IG scores correlated with favorable prognosis (e.g., benign glands). This demonstrates that TriPath 
learns to assign prognostic attribution across the cohort based on the extent of prognostic morphologies. In summary, the paper demonstrates 
that TriPath’s 3D volume-based analysis significantly improves patient prognostication in prostate cancer by overcoming the limitations of 2D 
methods, providing superior performance, and offering valuable insights into morphological features linked to disease progression.

A study by Chen et al. [65] developed and validated a WSI-based Immunohistochemical Feature Prediction System (WIFPS) designed to 
improve the subtyping of lung cancer (Figure 3). The key results demonstrate the system’s proficiency in predicting immunohistochemistry (IHC) 
phenotypes and its potential in detecting gene mutations directly from WSIs. The WIFPS effectively predicted the IHC status of nine subtype-
specific biomarkers: CK7, TTF-1, Napsin A, CK5/6, P63, P40, CD56, Synaptophysin, and Chromogranin A. The system achieved impressive average 
AUCs of 0.912, 0.906, and 0.888 across different validation datasets (total, external surgical resection, and biopsy specimens, respectively). Overall 
diagnostic accuracies were high: 0.925 for total validation datasets, 0.941 for external surgical resection specimens, and 0.887 for biopsy specimens. 
The WIFPS’s histological subtyping performance was comparable to that of general pathologists. Cohen’s kappa values, which measure agreement, 
ranged from 0.7646 to 0.8282, indicating good consistency. The diagnostic accuracy for subtyping reached 0.903 in the entire validation set, 0.948 
in surgical resection specimens, and 0.889 in biopsy specimens, with sensitivities greater than 0.813 and specificities greater than 0.912. The WIFPS 
demonstrated the ability to predict the IHC status of anaplastic lymphoma kinase, programmed death-1, and programmed death-ligand 1. ROC 
curve analysis showed AUCs of 0.917 for anaplastic lymphoma kinase, 0.576 for programmed death-1, and 0.525 for programmed death-ligand 1. 
The authors note that the limited number of cases for these markers suggests a need for further optimization with larger datasets. The system could 
also predict epidermal growth factor receptor (EGFR) and KRAS mutation status. AUCs for EGFR and KRAS mutation status ranged from 0.525 to 

Figure 1: Curation of instruction-following dataset and PathChat overview [63].
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0.917. The predictive performance was modest (AUC: 0.683 for EGFR; 0.545 for KRAS) in the independent validation set, indicating that more data 
could improve the model’s performance. WIFPS showed high agreement rates with expert pathologists in IHC interpretation, with Cohen’s kappa 
values ranging from 0.7903 to 0.8891 for individual biomarkers. The system’s performance in histological subtyping was similar to that of general 
pathologists. The WIFPS can help address challenges in clinical diagnosis, such as insufficient tissue amounts or the unaffordability of additional 
tests, by providing an alternative approach to improve lung cancer subtyping without these limitations. In summary, the WIFPS is a promising deep 
learning system that can accurately predict various IHC markers and gene mutations directly from H&E-stained WSIs, offering a valuable tool to 
assist pathologists in lung cancer diagnosis and subtyping, especially in cases with limited tissue or resources.

A study by Hameed et al. [66] presents the results of an ensemble deep learning approach for classifying breast cancer histopathology images, 
focusing on the performance of individual VGG16 and VGG19 models, and their ensemble. The primary objective was to accurately classify 
carcinoma images. Fully trained VGG16 model showed an average recall (sensitivity) of 94.55% (±2.59) for the carcinoma class. The overall 
accuracy was 91.41% (±3.40), with an average F1 score of 91.38% (±3.42). Fine-tuned VGG16 achieved an average recall of 94.09% (±3.35) for 
the carcinoma class. Its average overall accuracy was 91.67% (±3.69), and the average F1 score was 91.63% (±3.69). Fully trained VGG19 model 
demonstrated an average recall (sensitivity) of 95.45% (±3.41) for carcinoma images, which is 0.9 percentage points higher than the fully trained 
VGG16 model. The overall accuracy was 90.35% (±1.35), with an average F1 score of 90.31% (±1.35). Fine-tuned VGG19 approach yielded an 
average recall of 95.68% (±3.15) for carcinoma cases, reflecting a 1.59%-point improvement over the fine-tuned VGG16 model. Its average overall 
accuracy was 91.67% (±2.99), and the average F1 score was 91.63% (±3.03). The study employed an ensemble strategy by averaging the predicted 
probabilities from fine-tuned VGG16 and fine-tuned VGG19 models. This method aims to leverage the strengths of both models for more robust 
classification. The ensemble of fine-tuned VGG16 and fine-tuned VGG19 models achieved a sensitivity of 97.73% for the carcinoma class and an 
overall accuracy of 95.29%. It also yielded an F1 score of 95.29%. The recall value for the carcinoma class was consistently 97.73% in both fully 

Figure 2: Analysis of 3D pathology samples using weakly supervised AI [64].
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trained and fine-tuned ensemble approaches. However, the fine-tuned ensemble approach offered higher overall accuracy and F1 score compared 
to the fully trained ensemble. The proposed deep learning approach, particularly the ensemble model, demonstrated competitive classification 
performance for complex histopathology images of breast cancer, especially for carcinoma images. Despite using a comparatively smaller dataset, 
the results were competitive with other novel deep learning frameworks that often utilize larger datasets. For instance, previous studies using the 
BreakHis dataset reported accuracies ranging from 84.0% to 96.7% for 200x magnification, showcasing the effectiveness of the proposed ensemble 
method. In summary, the ensemble of fine-tuned VGG16 and VGG19 models proved to be highly effective for breast cancer histopathology image 
classification, particularly for identifying carcinoma, offering superior performance compared to individual models and competitive results against 
existing state-of-the-art methods, despite the use of a smaller dataset.

A study by El Achi et al. [67] evaluated the performance of a deep learning model, specifically a convolutional neural network algorithm, for 
the automated diagnosis of lymphoma across four categories: benign lymph node, diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma 
(BL), and small lymphocytic lymphoma (SLL). The results demonstrated high diagnostic accuracy, especially when considering multiple images 
per case. The convolutional neural network model achieved an overall diagnostic accuracy of 95% when predicting the diagnosis based on single, 
random images. Out of 240 test images, 228 were correctly diagnosed, while 12 images received an incorrect diagnosis. Specifically, among the 12 
misdiagnosed images, 4 SLL images were incorrectly predicted as benign, 4 other SLL images were predicted as DLBCL, and 4 benign images were 
predicted as BL. When incorporating all five representative images for each case and applying a majority voting strategy (where at least three out of 
five images had to agree), the model achieved 100% accuracy. All 48 sets of images were correctly diagnosed using this method. This finding suggests 
that relying on a single image for diagnosis is too stringent, and a more robust microscopic diagnosis requires considering all representative images 
to exclude outliers. The optimized convolutional neural network used specific hyper-parameters for its layers: a first convolutional layer with a 5x5 

Figure 3: Clinical application scenario of the WIFPS and its comparison with general and expert pathologists for histologic subtyping [65].
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kernel and 20 feature maps (tanh activation), a first pooling layer with a 3x3 kernel and 3x3 stride (max-pooling), a second convolutional layer with 
a 5x5 kernel and 50 feature maps (tanh activation), a second pooling layer with a 3x3 kernel and 3x3 stride (max-pooling), a first fully connected 
layer with 500 hidden nodes (tanh activation), and a second fully connected output layer with 4 nodes (softmax activation). In summary, this 
preliminary study provides proof of concept for integrating automated lymphoma diagnostic screening into future pathology workflows. The high 
accuracy, particularly with set-by-set analysis, highlights the potential of deep learning to augment pathologists’ productivity by providing reliable 
diagnostic assistance for common lymphoma types.

A study by Yu et al. [68] investigated the use of machine learning, specifically deep neural networks and XGBoost, to classify primary intestinal 
T-cell lymphomas (PITLs) into monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) and intestinal T-cell lymphoma, not otherwise 
specified (ITCL-NOS). The key results demonstrate the effectiveness of this approach in segmenting nuclei, quantifying morphological features, 
and accurately classifying these challenging lymphoma subtypes. The deep neural network developed for detecting and segmenting lymphocyte 
nuclei achieved strong performance. It had an average precision of 0.943 on the validation set and 0.881 on the testing set for segmenting lymphoma 
nuclei. For the testing set, the model demonstrated a precision (positive predictive value) of 0.911 and a recall (sensitivity) of 0.868. The model 
successfully detected a large number of nuclei, with an average of 892.18 ± 254.80 nuclei per high-power field (HPF). This enabled the computation 
of quantitative nuclear morphometrics, which are crucial for analysis. The XGBoost model, utilizing only morphological feature measurements, 
achieved an AUC of 0.966 (95% CI: 0.949 to 0.984) for classifying MEITL versus ITCL-NOS. This performance was significantly superior to a deep 
convolutional neural network directly trained on images, which achieved an AUC of 0.820 (0.734 to 0.906). Adding IHC phenotypes (CD8 and 
CD56 expression) as inputs to the XGBoost model did not significantly improve its discriminative power, yielding an AUC of 0.955 (95% CI: 0.935 
to 0.975) (p value = 0.412). This indicates that morphological features alone are highly effective for classification. The most important morphological 
features for classification by the XGBoost model were the variance in perimeter, the variance in nuclear area, and the mean of nuclear irregularity. 
When IHC phenotypes were included, CD56 and CD8 expression ranked highly, second only to the variance in perimeter. Statistical analysis using 
a General Linear Model revealed statistically significant differences in several morphological feature measurements between MEITL and ITCL-
NOS. For instance, five out of seven measurements in variance and mean showed significant differences between the two disease subtypes. Features 
related to cell size, such as perimeter and area, had a stronger effect on variance than on the mean (p < 0.001). The two disease subtypes could be 
visually separated by plotting the variance in nuclear perimeter against the variance in nuclear irregularity. MEITL cases typically showed smaller 
variance in both, with a linear correlation, while ITCL-NOS cases exhibited higher variance. The model demonstrated a 1:1 ratio prediction for the 
four borderline cases, which were difficult to distinguish morphologically. Two cases were predicted as MEITL, and two as ITCL-NOS, highlighting 
the model's ability to aid in challenging diagnoses. In summary, the study successfully demonstrated an accurate and human-interpretable machine 
learning approach for classifying PITLs, highlighting the critical role of quantitative nuclear morphometrics and the superior performance of 
XGBoost over direct convolutional neural network application for this task.

A study Zhang et al. [69] presents the results of developing and validating deep learning models for rhabdomyosarcoma (RMS) subtype 
classification and embryonal RMS (eRMS) prognosis prediction using pathology images. The trained RMS subtype classification model, tested on 
1674 image patches, achieved an overall patch-level prediction accuracy of 87.9% for five classes (aRMS, eRMS, scRMS, other tissues, and white 
background). Specifically, for cancerous tissue, the accuracy was 84.0% for aRMS, 90.2% for eRMS, and 76.3% for scRMS. The model also showed 
high accuracy for noncancerous tissues (87.5%) and white background (99.7%). When aggregating patch-level predictions to the whole slide level, 
the model correctly classified 29 out of 31 aRMS slides and 144 out of 161 eRMS slides. The AUC values for slide-level predictions were 0.94 for 
aRMS and 0.92 for eRMS, indicating strong performance in distinguishing these subtypes. The eRMS prognostic model, developed using transfer 
learning, successfully stratified patients into high- and low-risk groups. This model was trained using 3074 image patches from low- or high-risk 
patient slides. In the test data set of 136 eRMS patients, the model separated them into 42 low-risk and 94 high-risk predictions. Patients in the 
predicted low-risk group showed significantly better survival, with a much lower chance of relapse/progression, second malignancy, or death, 
compared to the high-risk group (likelihood ratio test; p = 0.02). The Cox proportional hazards model predicted a hazard ratio of 4.55 (95% CI: 
1.04 to 19.96; p = 0.04) for the high- versus low-risk group. After adjusting for patient age and sex, the image-based prognostic model remained a 
significant independent prognostic factor, with a hazard ratio of 4.64 (95% CI: 1.05 to 20.57; p = 0.04). In summary, this study demonstrates the 
successful application of deep learning algorithms to classify RMS subtypes and predict prognosis from histopathology images. The models show 
high accuracy and significant prognostic value, suggesting their potential as aids in pathology evaluation and risk stratification for RMS patients, 
particularly in the context of eRMS.

A study by Swiderska-Chadaj et al. [70] investigated the impact of scanning systems and normalization techniques on the performance of 
convolutional neural networks for automatic prostate cancer detection in WSIs. In the initial three-fold cross-validation experiment, U-Net, 
DenseNetFCN, and EfficientNet models were compared for their performance on the development set. U-Net demonstrated superior performance 
with an AUC of 0.98 ± 0.005, outperforming DenseNetFCN (0.97 ± 0.008) and EfficientNet (0.97 ± 0.009). At the patch level, U-Net achieved a Dice 
coefficient of 0.80 (Jaccard index: 0.67), while DenseNetFCN achieved 0.74 (Jaccard index: 0.59). The analysis at the whole-slide level for the full 
development set showed U-Net performing best in terms of AUC. For the two independent test sets (IT1 and IT2), the U-Net model, trained on the 
full development set, achieved AUCs of 0.92 and 0.83, respectively. The performance drop on IT2 (approximately 15%) was noted as unacceptable 
for clinical adoption, while IT1’s drop (around 6%) was considered reasonable. The study found that performance deterioration on independent 
test sets could be partly attributed to scanner variability. Re-scanning IT2 slides on the same Philips scanner used for the development set improved 
the AUC from 0.83 to 0.88, reducing the performance drop from 15% to 10%. For IT1, re-scanning had a slightly negative impact on AUC (0.92 
to 0.91) but improved accuracy (0.83 to 0.87). Applying color normalization (WSICS algorithm) as a pre-processing step resulted in a 0.04 AUC 
improvement for IT1 and a 0.02 AUC deterioration for IT2. Cycle-GAN-based style normalization showed a significant improvement in AUC, 
ranging from 0.06 to 0.14 for both test sets. This method notably reduced false positive detections and increased specificity at a sensitivity of 1.0. After 
Cycle-GAN normalization, the AUC for the independent sets (0.97 and 0.98) aligned closely with the cross-validation results on the development 
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set (0.98), indicating that normalization can help close the generalization gap. The proposed method demonstrated relative robustness to scanner 
differences. The results highlight the potential of deep learning systems as a triage tool, especially at high sensitivity (e.g., >0.99), to reduce the 
workload of pathologists by automatically pre-screening prostate biopsies. In summary, the study demonstrates that while deep learning models 
show strong potential for prostate cancer detection, factors like scanner variability significantly impact performance. Normalization techniques, 
particularly Cycle-GAN based style normalization, are crucial for improving model robustness and generalization across different scanning and 
staining conditions, helping to bridge the gap between development and real-world application performance.

A study by Tabibu et al. [71] demonstrates the application of deep learning frameworks for the automatic classification of Renal Cell Carcinoma 
(RCC) subtypes and the prediction of patient survival outcomes using digital histopathological images. The key results highlight the efficacy of 
convolutional neural networks and a novel support vector machine-based approach in achieving these goals. Convolutional neural networks 
trained on WSIs effectively distinguished clear cell (KIRC) and chromophobe (KICH) RCC from normal tissue. The patch-wise classification 
accuracy on the test set was 93.39% for KIRC and 87.34% for KICH at 40x resolution. A slide-wise analysis, which involved counting the percentage 
of positively classified patches in a slide, yielded an AUC of 0.98 for KIRC and 0.95 for KICH using Resnet 34. This indicates strong performance 
in identifying cancerous regions. The study found that better performance was generally obtained for KIRC when trained on 40x images and for 
KICH when trained on 20x images, suggesting complex morphological distinguishing features between cancers. A convolutional neural network 
trained to distinguish clear cell (KIRC), chromophobe (KICH), and papillary (KIRP) RCC achieved a patch-wise classification accuracy of 87.69% 
and a micro-average AUC of 0.91 with a Kappa score of 0.794. However, initial recall scores were around 83%, indicating some misclassification, 
particularly for KIRP (70%) due to data imbalance. To address data imbalance, a novel directed acyclic graph support vector machine method 
was introduced. This approach converts the multi-class classification problem into multiple binary classification tasks. When combined with the 
convolutional neural networks, the directed acyclic graph support vector machine significantly improved patch-wise accuracy by 5% and increased 
the micro-average AUC by 0.03. The classification score for KIRP also increased by 10%. Two additional strategies were applied to overcome class 
imbalance: (i) data augmentation: Balancing the class distribution through data augmentation of the minority class resulted in an accuracy of 
91.47% with a Kappa score of 0.859, and (ii) weighted resampling: Training the convolutional neural network with weighted resampling, giving 
more weight to the minority class, achieved an accuracy of 92.16% with a Kappa score of 0.871. Both methods significantly improved subtype 
classification accuracy and applying directed acyclic graph support vector machine further enhanced performance. The study successfully extracted 
morphological features from high-probability tumor regions identified by the convolutional neural network to predict patient survival outcomes 
for KIRC. The generated risk index, based on both tumor shape and nuclei features, was significantly associated with patient survival. Thirteen 
tumor shape features and six nuclei shape features were found to be significantly associated with patient survival (p < 0.05). Total area (p = 1.5e-6, 
HR = 2.398) and total perimeter (p = 1.49e-5, HR = 2.485). Total convex area (p = 2.2e-7, HR = 2.576) and total major axis (p = 0.000614, HR = 
2.252). An integrative model combining image features showed a significant association with survival outcome (p = 3.68e-6). Multivariate analysis 
further indicated that predicted risk indices and stages of tumor significantly impact survival. In summary, the paper demonstrates that deep 
learning can play a crucial role in both cancer diagnosis and prognosis by accurately classifying RCC subtypes and predicting patient survival based 
on histopathological images. The integration of convolutional neural networks with directed acyclic graph support vector machine effectively 
addresses data imbalance, and the extracted morphological features provide valuable prognostic information.

While AI and automation are transforming clinical pathology, it is important to consider the broader implications of these technologies. 
The shift towards digital and AI-driven pathology requires careful consideration of ethical, regulatory, and infrastructural challenges to ensure 
responsible implementation. As the field continues to evolve, balancing technological advancements with these considerations will be crucial for 
maximizing the benefits of AI in clinical pathology.

Challenges and Future Directions
Despite the significant progress in AI-driven clinical pathology, several challenges hinder its widespread adoption (Table 2). One major concern 

is data integrity, as AI models rely on high-quality, diverse datasets for training [72, 73]. Biases in these datasets, whether due to underrepresentation 
of certain populations or inconsistent sample collection- can lead to algorithmic biases, resulting in skewed or inaccurate diagnoses. Ensuring 
robust data governance and inclusive datasets is critical to developing reliable AI tools that perform equitably across diverse patient groups [74].

Another challenge lies in the integration of AI into existing clinical workflows [75, 76]. Many pathology laboratories still operate with 
traditional methods, and transitioning to AI-assisted diagnostics requires substantial infrastructural and procedural changes [77]. Clinicians 
and technicians must be trained to use these new tools effectively, and workflows must be redesigned to accommodate AI without disrupting 
efficiency [78, 79]. Resistance to change and the steep learning curve associated with AI adoption further complicate this transition, necessitating 
comprehensive training programs and stakeholder engagement [80, 81]. The phenomenon of automation bias, where clinicians may overly rely on 

Challenge Description Suggested approach
Data bias and quality Underrepresentation and inconsistency in training datasets Develop diverse, high-quality datasets
Workflow integration Resistance to change and steep learning curves Comprehensive training and stakeholder buy-in

Regulatory and ethical considerations Lack of standardized approval frameworks Establish clear validation and approval pathways
Automation bias Over-reliance on AI recommendations Promote balanced human–AI collaboration
Explainability Black-box nature of AI decisions Invest in explainable AI models

Multi-omics integration Need to combine histology with genomics, proteomics Foster interdisciplinary research
Global implementation disparities Unequal access to AI infrastructure Encourage global partnerships and data sharing
Validation in real-world settings Limited large-scale pilot studies Run robust clinical trials and pilots

Table 2: Challenges and future directions in AI integration.
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AI recommendations, poses another challenge. Research by Rosbach et al. [82] highlighted the risks associated with automation bias, particularly 
under time pressure, which can lead to erroneous clinical decisions. Therefore, training and education on the appropriate use of AI tools are 
essential to mitigate these risks.

Regulatory and ethical considerations also pose significant hurdles. The lack of standardized guidelines for validating and approving AI-based 
diagnostic tools creates uncertainty for developers and healthcare providers [83, 84]. Regulatory bodies must establish clear frameworks to assess 
the safety, efficacy, and transparency of AI algorithms before they can be deployed in clinical settings [62, 85]. Additionally, ethical concerns-such 
as patient data privacy, accountability for AI-driven decisions, and the potential for over-reliance on automation-must be addressed to ensure 
responsible implementation [86, 87].

Automation bias represents another critical challenge, where clinicians may place undue trust in AI recommendations, even when they 
contradict their own judgment [88]. Studies have shown that under time pressure, healthcare providers are more likely to defer to AI outputs, 
potentially overlooking errors or misdiagnoses. Mitigating this risk requires fostering a balanced approach where AI serves as an assistive tool 
rather than a replacement for human expertise [89, 90]. Continuous education and decision-support systems that encourage critical evaluation of 
AI outputs can help reduce over-reliance.

Looking ahead, the future of AI in clinical pathology is promising, with emerging technologies poised to further enhance diagnostic capabilities. 
The integration of AI with multi-omics data-such as genomics, proteomics, and metabolomics-could enable more precise and personalized 
diagnostic approaches [91, 92]. For example, AI algorithms analyzing genetic mutations alongside histopathological features could improve cancer 
subtyping and treatment selection. Similarly, advancements in explainable AI may increase transparency, allowing clinicians to understand and 
trust AI-generated insights. The integration of AI with other emerging technologies, such as genomics and molecular profiling, holds the potential 
to further enhance diagnostic accuracy and personalize treatment strategies [2, 93].

To fully realize AI’s potential, collaborative efforts among researchers, clinicians, policymakers, and industry stakeholders are essential. 
Investment in interdisciplinary research, large-scale validation studies, and real-world pilot programs will be crucial for refining AI applications. 
Additionally, fostering global partnerships to share data and best practices can accelerate progress while addressing disparities in AI adoption. By 
tackling current challenges and embracing future opportunities, the field can harness AI to revolutionize clinical pathology, delivering faster, more 
accurate, and equitable diagnostics for patients worldwide.

Conclusion
The integration of automation and AI into clinical pathology represents a paradigm shift in diagnostic medicine, offering unprecedented 

improvements in accuracy, efficiency, and scalability. By leveraging advanced algorithms, digital pathology platforms, and high-throughput 
automation, AI has demonstrated remarkable capabilities in tasks ranging from tissue segmentation and cancer subtyping to prognostic prediction 
and workflow optimization. Case studies, such as PathChat’s multimodal diagnostics and TriPath’s 3D tissue analysis, underscore the transformative 
potential of these technologies in augmenting pathologists' expertise and addressing longstanding challenges like inter-observer variability and 
sampling bias. However, the successful adoption of AI hinges on addressing critical barriers, including data biases, workflow integration, regulatory 
frameworks, and ethical considerations, to ensure equitable and reliable implementation across diverse clinical settings. 

Looking ahead, the future of AI in clinical pathology is poised for further innovation, particularly through synergies with multi-omics data, 
explainable AI, and global collaborative initiatives. These advancements promise to usher in an era of precision medicine, where AI-driven 
insights complement human judgment to deliver faster, more accurate, and personalized diagnoses. To realize this vision, sustained investment in 
interdisciplinary research, robust validation studies, and clinician education will be essential. By navigating these challenges thoughtfully, the field 
can harness AI’s full potential to revolutionize patient care, transforming clinical pathology into a more dynamic, data-driven, and patient-centric 
discipline.
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